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dramatic and discontinuous “jump” in the optimal allocation to stocks as the 
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1. Introduction 

The optimal asset allocation between stocks and bonds, and its dependence on the investment 

horizon, is one of the most central issues in financial economics.1 It is a question of great practical 

importance for investors saving for retirement. This paper theoretically analyzes and then 

experimentally investigates asset allocation choices corresponding to different investment 

horizons. We focus on the two main competing preference paradigms: expected utility with 

Constant Relative Risk Aversion (CRRA), which is widely employed in the economic literature, 

and Prospect Theory (PT), which has been a dominating paradigm in the last few decades. We first 

theoretically analyze the changes in the optimal asset allocation as a function of the investment 

horizon for CRRA and for PT preferences, for general rate of return distributions. PT is analyzed 

with four alternatives suggested in the literature as the reference point. Based on this theoretical 

analysis we then experimentally study subjects’ asset allocation choices as a function of the 

investment horizon in a controlled setting, where the two competing preference models have very 

clear and very different theoretical predictions. 

It is well-known that CRRA preferences imply that the asset allocation should be independent 

of the investment horizon, when returns are i.i.d. and portfolio revisions are allowed after each 

period (Mossin 1968, Merton and Samuelson 1974). Quite surprisingly, in this study we show that 

even if revisions are not allowed, which is the setup of our experiment, there is virtually no change 

in the optimal asset allocation as the horizon increases.  

                                                           
1 Kelly 1956, Latané 1959, and Markowitz 1976 argue that as the investment horizon grows indefinitely, a 

stock portfolio, which has a higher geometric mean than a bond (or mixed) portfolio, will almost surely yield 

a higher terminal wealth than any other alternative portfolio. This supports the idea of stocks for the long run. 

In contrast, Samuelson 1971 and Merton and Samuelson 1974 show that for CRRA preferences (with 

portfolio revisions after every period) the optimal investment proportion in stocks is constant, regardless of 

the length of the investment horizon. Levy (2019) bridges between these views by deriving the optimal asset 

allocation for CRRA investors under the assumption of log-normal return distributions, and showing that the 

empirical parameters imply that stocks are preferred to bonds for all investors with RRA<4.  For general 

return distributions, the concept of Almost Stochastic Dominance has been employed to argue for stocks for 

the long run for almost all preferences (Leshno and Levy 2002, Levy 2015), however, this argument has been 

challenged (Levy 2009). 
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In contrast, PT preferences imply very different behavior. The PT value function weighs losses 

more heavily than gains, as captured by the property of loss aversion. Given a stock with a positive 

mean return, the probability of a loss typically decreases as the investment horizon increases. Thus, 

as the horizon increases, the stock becomes more attractive. This has led Benartzi and Thaler (1995) 

to suggest that myopic loss aversion, i.e. PT loss aversion combined with a short evaluation period, 

can explain the equity premium puzzle. This prediction of PT, that the asset allocation to stocks 

should increase with the investment horizon is well-known, and has been experimentally tested by 

Gneezy and Potters (1997) and Thaler, Tversky, Kahneman, and Schwartz (1997). In this study we 

theoretically confirm that the PT optimal allocation to the stock indeed grows with the investment 

horizon, as suggested by previous studies.  However, perhaps counterintuitively, we show that the 

optimal allocation to stocks does not grow gradually. Instead, as the horizon increases, the optimal 

allocation “jumps” dramatically and discontinuously to 100% in the stock (or more, if borrowing 

at the risk-free rate is possible).  This property does not depend on the return distribution, the 

specifics of the PT value function parameters, or on the use of the cumulative prospect theory (CPT) 

decision weights. It is also robust to different modelling assumptions about the reference point, 

which can be either at the current wealth, the future value of wealth if invested in the risk-free asset, 

the future value of wealth if invested in the stock (namely, a stochastic reference point), or the 

expected value of wealth given the subject’s choice, as suggested by Kőszegi and Rabin (2006). 

We analytically derive and intuitively explain this peculiar behavior.  With realistic PT and return 

parameters the jump to an optimal weight of 100% in stocks occurs at very short horizons of 2-3 

years. 

 These very specific and very distinct predictions of the two competing models allow us to 

make clear-cut inference about preferences from the choices in the experiment. We find rather 

strong support for CRRA preferences, with 44% of the subjects being consistent with these 
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preferences. In contrast, we find that only 6% of the subjects are consistent with PT preferences 

(for a very wide range of parameters, and alternative reference points). 

Several previous studies have examined the implications of PT to asset allocation choice. 

Berkelaar, Kouwenberg, and Post (2004) derive the optimal dynamic asset allocation for a PT 

investor in a continuous-time setting, where prices follow an Ito process and markets are complete. 

They find, as we do, that the optimal allocation to stocks increases with the investment horizon. 

Gomes (2005) examines the trading volume implications of PT and finds a positive non-linear 

relation between trading volume and stock return volatility. He also derives the optimal asset 

allocation between a stock and a risk-free asset and finds that unless the stock’s expected return 

exceeds a certain threshold (which depends on the investor’s loss-aversion parameter) the investor’s 

optimal proportion in the stock is zero, also consistent with our results.2 The two papers most 

closely related to the present study are the experimental studies by Gneezy and Potters (1997) (GP), 

and by Thaler, Tversky, Kahneman, and Schwartz (1997) (TTKS), who experimentally investigate 

the influence of the investment horizon on the average asset allocation, aggregated across all 

subjects. They find that when subjects are presented with longer horizons, on average they tend to 

increase their investment proportions in the stock, consistent with the predictions of myopic loss 

aversion. We find similar results regarding the average proportion. However, when we examine 

choices on the individual level, and compare them with the predictions of PT, we find very little 

support for PT. The two main contributions of the present study relative to the existing literature 

are: 1) the theoretical identification of a discontinuous jump in the optimal asset allocation of PT 

investors as the investment horizon increases (or as the stock’s return distribution gradually 

                                                           
2 These papers investigate the asset allocation between stocks (or a stock index) and the risk-free asset. For a 

discussion of the optimal diversification across stocks for a PT investor see Levy and Levy (2003) and Levy, 

De Giorgi and Hens (2012). 
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improves), and 2) the experimental investigation of this prediction at the individual level.  Section 

6 discusses the relation of our results to the existing literature in detail. 

In the next section we derive the theoretically optimal asset allocation choices implied by PT. 

Section 3 derives the theoretical predictions for CRRA preferences (with no rebalancing). Section 

4 describes the experiment, and Section 5 provides the results. Section 6 reconciles our results with 

the existing literature. Section 7 concludes with a discussion of the implications of the findings for 

economic theory and for investors and pension funds. 

2. Optimal Asset Allocation for Prospect Theory investors 

The Prospect Theory value function is given by: 

( )










−−
=

0

0
)(

xforx

xforx
xV




,      (1) 

where  x  is the change of wealth relative to the reference point,   the exponents  0 < 𝛼 ≤ 1 and 

0 < 𝛽 ≤ 1  imply risk-aversion for gains and risk-seeking for losses, and the constant 1 < 𝜆 is 

known as the loss-aversion parameter. Tversky and Kahneman (1992) experimentally estimate 

25.2,88.0 ===  . 

 In what follows, we assume  = . There are two justifications for this assumption. First, 

experimental studies that estimate these parameters find that they are either exactly equal (Tversky 

and Kahneman 1992, Camerer and Ho 1994, and Wu and Gonzalez 1996), or that they are very 

close to each other (Abdellaoui 2000, and Abdellaoui et. al. 2005). Second,    theoretically 

implies accepting some fair symmetric gambles, in contradiction to the fundamental notion of loss 

aversion (Levy 2010)3.  

                                                           
3 For example, suppose that ,8.0,2 ==   and 6.0= . Consider a fair symmetric gamble that yields 

either +a or –a with equal probabilities, and a PT investor with reference point at the current wealth. The 
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Regarding the reference point relative to which gains or losses are measured, there are four main 

variations suggested in the literature: 

1)  the future value of the current wealth if invested at the risk-free rate, 

2) the current wealth,  

3) the expected value of future wealth, given the investor’s choice,  and 

4) the future value of the current wealth if invested in the stock. 

All of these alternatives imply a dramatic jump in the optimal allocation to the stock as the horizon 

increases. Below we analyze alternative 1) in detail. The corresponding analysis for alternatives 2)-

4) are provided in Appendix A.   

Case 1: Reference point at the Future Value of Wealth Invested at the Risk-Free Rate 

If the investment proportion in the stock is w, then the terminal wealth is: 

( ) fT RwRwWW −+= 1
~~

0 ,       (2) 

where 0W is the initial wealth, R
~

 is the stochastic return on the stock (1+rate of return), and fR

is the return on the risk-free asset (1+riskfree interest rate). When the reference point is the future 

value of the current wealth if invested at the risk-free rate, fRW0 , the change in wealth relative to 

the reference is thus: 

 ( )   ffffT RRwWRRwRwWRWWx −=−−+=−
~

1
~~~

000 .  (3) 

                                                           

expected value of this gamble is  6.08.0 2
2

1
aa − , and it is positive for a>32. Thus, a PT investor with the 

above parameters will accept this fair symmetric gamble for any value of a>32. Similarly, for any other 

  there are some fair symmetric gambles that will be accepted (for any  ). Only  = ensures that all 

fair symmetric gambles are rejected. See Levy (2010) for more detail. 
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 Denoting the return in excess of the risk-free rate by fRRr −
~~

, the PT  expected value is given 

by: 
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where  )(rf  is the probability density function of excess returns. This implies two corner solutions 

for the optimal asset allocation, depending on the sign of the brackets in eq.(4): if the sign is positive 

the optimal investment weight in the risky asset is 1*=w , and if the sign is negative we have 

0* =w .4 Namely, the optimal asset allocation is: 
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The above equation implies that the optimal asset allocation for a PT investor is a corner solution: 

either zero or one.  

              We shall see below that as the horizon increases, the optimal allocation to the stock 

“jumps” from 0 to 1 (unless it is already 1 for the 1-period horizon). To see this, note that if the 

stock’s expected return is higher than the return on the risk-free asset, as the horizon increases, the 

                                                           
4 Recall that 01  w , as it is assumed that no borrowing or short-selling are allowed. If borrowing is 

allowed, and the square brackets in eq.(4) are positive, this implies that the investor should lever his position 

in the stock up to the maximal possible limit. Levy (2010) employs this property to translate the empirical 

equity premium in different countries to estimates of the loss aversion parameter. 
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probability that stock yields a higher return than the risk-free asset converges to 1.5  Thus, as the 

horizon increases 
−

0

)( drrf  approaches 0, and as 
)( r− is bounded (the rate of return on a stock 

can’t be lower than -100%), the term 
−

−

0

))(( drrrf 
 also converges to 0. Hence, when the 

horizon increases, the term A in eq.(5) increases to infinity, and the optimal allocation to the stock 

becomes 1 for any finite value of  . This conforms to the profound intuition of Benartzi and Thaler 

(1995, 1999): when the investment horizon increases the probability of a loss becomes smaller, and 

stocks become more attractive relative to the risk-free asset. The contribution of the present analysis 

is to show that this shift to stocks is not gradual: it occurs as a dramatic and discontinuous jump 

from an allocation of 0% to the stock to an allocation of 100%. Moreover, as we shall see below, 

one does not need a very long horizon to obtain this "jump" – for typical parameters it occurs at an 

investment horizon of 2-3 years.   

 The above analysis employs the objective probabilities. The results are qualitatively the 

same if one employs the PT (or CPT) decision weights instead. In this case, one should replace the 

objective p.d.f )(rf  in equations (4) and (5) with the PT or CPT decision-weight p.d.f., )(* rf . 

This does not affect the result of a jump from 0 to 1 in the optimal proportion in the stock as the 

horizon increases (Appendix B shows this for the return distributions employed in our experiment).  

 We would like to emphasize that while the focus of the present study is the relationship 

between the optimal asset allocation and the investment horizon, the dramatic jump in the optimal 

allocation for a PT investor occurs when any of the return or preference parameters are varied. 

Namely, eq.(5) implies a dramatic jump from 0 to 1 (or vice versa) when the distribution of excess 

                                                           
5 Indeed, Bali et. al. (2009) empirically find that the probability of the stock return being higher than the bond 

return is about 66% for monthly returns, and it gradually increases up to 97%-99%  for a five-year horizon. 
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returns, 𝑓(𝑟) changes. This can happen as a result of an increase in the investment horizon, which 

is our main focus, but can also be a result of a change in the stock return distribution due to changing 

economic conditions, or to a change in the risk-free interest rate. For example, Figure 1 shows the 

optimal asset allocation as a function of the risk-free rate,  𝑟𝑓 , for a PT investor with the Tversky 

and Kahneman (1992) parameters 25.2,88.0 ===  , and the empirical stock return 

distribution, estimated by the annual returns on the S&P500 index during 1997-2016. The optimal 

allocation is computed by eq.(5). For comparison, the figure also shows the optimal asset allocation 

for an investor with a logarithmic utility function, found numerically. The figure shows that while 

the optimal allocation to the stock decreases gradually with  𝑟𝑓 for the investor with log preference 

(recall that as no borrowing or shot-selling are allowed, the allocation is bounded between 0 and 

1), the PT investor switches dramatically from an allocation of 1 to the stock to 0, at critical value 

of  𝑟𝑓 = 0.035. 
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Figure 1: The optimal asset allocation between the S&P500 index and a risk-free asset 

as a function of the risk-free interest rate  𝑟𝑓. The empirical S&P500 annual returns 

during 1997-2016 are employed. The bold line shows the optimal allocation to the 

stock for a PT investor with the Tversky  and Kahneman (1992) parameters 

25.2,88.0 ===  , given by eq.(5). The optimal allocation to the stock drops 

dramatically from 100% to 0% once the risk-free rate reaches 0.035. In contrast, for 

an investor with a logarithmic utility function (thin line) the optimal allocation to the 

stock decreases gradually with the risk-free rate (note that the allocation is bounded 

between 0% and 100%, as no borrowing or short-selling are allowed). 
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   Let us now employ the above general analysis to the specific distributions employed in our 

experiment. In the experiment subjects are asked to allocate their investment between a risky stock 

and a risk-free bond. There are three different tasks, where the return distributions are different in 

each task. Table I provides the three tasks (the detailed experimental procedure is discussed in 

Section 4).  In Task 1, R
~

 can take two values, 0.9 or 1.3, with equal probabilities, and the risk-free 

rate is 𝑅𝑓 = 1.05. These values correspond to excess returns on the stock of  r =

15.005.19.0 −=− and r = 25.005.13.1 =− , respectively. Thus, the expected value in Task 

1 is given by:6 

     ( )( ) ( )  
 25.015.0

2

1
25.0

2

1
15.0

2

1
)( 000 +−=+−= wWwWwWwEV . (6) 

This implies that there are two corner solutions for the optimal asset allocation, w*: 

w*=0        if  025.015.0 +−  , and: 

w*=1        if  025.015.0 +−  . 

The threshold point that determines whether the optimal allocation in the stock will be 0 or 100% 

depends on the value function parameters    and  . Namely, the optimal investment proportion 

in the stock, w*, is given by: 
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6 The objective probabilities are employed here. Applying CPT decision weights yields the same qualitative 

results – see the tables in Appendix B. 



 

11 

 

Table I 

The three tasks in the experiment are given below. In each task the subject is asked 

to allocate his investment between the stock and the risk-free bond. The detailed 

experimental procedure is provided in Section 4. 

Task 1: 

If you invest 100% in the stock  If you invest 100% in the risk-free bond 

Outcome 
Rate of 

Return 
Probability 

 
Outcome 

Rate of 

Return 
Probability 

$90,000 -10% 50%  $105,000 5% 100% 

$130,000 30% 50%     

 

Task 2: 

If you invest 100% in the stock  If you invest 100% in the risk-free bond 

Outcome 
Rate of 

Return 
Probability 

 
Outcome 

Rate of 

Return 
Probability 

$81,000 -19% 25%  $110,250 10.25% 100% 

$117,000 17% 50%     

$169,000 69% 25%     

 

Task 3: 

If you invest 100% in the stock  If you invest 100% in the risk-free bond 

Outcome 
Rate of 

Return 
Probability 

 
Outcome 

Rate of 

Return 
Probability 

$72,900 -27.1% 12.5%  $115,762 15.76% 100% 

$105,300 5.3% 37.5%     

$152,100 52.1% 37.5%     

$219,700 119.7% 12.5%     
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Panel A of Table II shows the optimal investment proportion in the stock in Task 1 for different 

combinations of   and  . For example, for the Tversky and Kahneman (1992) parameters 

25.2,88.0 ==   we have 56.1
15.0

25.0
25.2

88.0

88.0

== , and therefore the optimal proportion 

in the stock is 0. In contrast, for the combination 50.188.0 ==  , the optimal proportion is 1 

(see the shaded cells in Panel A of Table II).  

Similarly, in Task 2 the EV is given by: 









++−=   5875.0

4

1
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4

1
)( 0 wWwEV ,   (8) 

and again we have two corner solutions. The optimal investment proportion in the stock in Task 2 

is given by: 
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(which is a special case of eq.(5) with the return parameters of Task 2). Panel B of Table II provides 

the optimal investment proportion in the stock in Task 2 for various combinations of    and  . If 

we take, for example, the Tversky and Kahneman (1992) parameters 25.2,88.0 ==   we 

have: 
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 40.2

2925.0
4

1

0675.0
2

1
5875.0

4

1

25.2
88.0

88.088.0

=

+

= , and hence the optimal investment proportion in 

the stock is 1, i.e. 100%. Thus, a PT investor with the Tversky and Kahneman parameters 

25.288.0 ==   is expected to switch from a proportion of 0% in the stock in Task 1, to 100% 

in the stock in Task 2. Panel C of Table II provides the optimal asset allocation in Task 3, 

determined by eq.(5) and the return distributions of Task 3. Again, we see the same pattern of two 

corner solutions. 

A comparison of the three panels of Table II reveals that for most combinations of   and  , a 

“jump” from 0% in the stock to 100% in the stock occurs as the horizon increases (as one moves 

either from Task 1 to Task 2, or form Task 2 to Task 3). Thus, with the annual return distribution 

employed in our experiment, for PT investors, increasing the horizon from 1 year to 3 years implies 

a jump from 0% in the stock to 100% in the stock (unless the optimal allocation to the stock is 

already 100% at the 1-year horizon). 

Employing Cumulative Prospect Theory (CPT) decision weights instead of the objective 

probabilities yield similar results. The table  in  Appendix  B shows the optimal asset  allocation   

in  Tasks  1-3  when  the CPT decision weights are  employed  ( 69.0,61.0 ==  , see Tversky 

and Kahneman 1992; see Bruhin, Fehr‐Duda, and Epper 2010 for recent evidence supporting CPT 

decision weighting).  

The alternative cases of a reference point at the current wealth, the expected future wealth 

given the investor’s choice, and the future wealth if invested in the stock yield a similar jump in the 

optimal asset allocation as the horizon increases. The jump is not necessarily from 0 to 1 in these 

cases, but rather, from some positive value (e.g. 0.3) to 1. These cases are analyzed in Appendix A. 
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Table II 

Optimal Investment Proportion in the Stock for PT Preferences with Reference Point 

at the Future Value of Current Wealth ( fRW0 ). Three of the highlighted cells 

correspond to the Tversky and Kahneman (1992) parameters of  𝛼 = 𝛽 = 0.88    𝜆 =

2.25 (and one cell in Panel A also to the case 𝛼 = 𝛽 = 0.88   𝜆 = 1.50). 

A: Task 1 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

B: Task 2 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

C: Task 3 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 

2.75 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 



 

15 

 

3.  Optimal Asset Allocation for CRRA Preferences 

It is well-known that for CRRA preferences the optimal proportion is independent of the 

horizon when portfolio revisions are allowed after each period (Mossin 1968, Merton and 

Samuelson 1974). This is not the case here, because in our setup portfolio revisions are not possible. 

This is the same setup as in Gneezy and Potters (1997) and in Thaler, Tversky, Kahneman, and 

Schwartz (1997), and the logic of this setup is explained in Section 4. We show below that despite 

the fact that revisions are not possible, the optimal asset allocation is almost independent of the 

horizon for CRRA investors. Thus, quite surprisingly, not allowing for portfolio revisions does not 

change the optimal diversification strategy much, as almost the same optimal diversification is 

obtained with and without revisions.  

The CRRA utility function is given by: ( )




−
=

−

1

1W
WU , where W denotes wealth, and 

is the coefficient of relative risk aversion. The optimal investment proportion in the stock in each 

of the three tasks, for various values of  , is given in Table III. These optimal proportions are 

calculated numerically by solving for the proportion that maximizes expected utility. Namely, if 

the investment proportion in the stock is denoted by w, the terminal wealth is given by: 

( ) fRwRwWW −+= 1
~~

0 . For each value of    and each task, we numerically find the optimal 

proportion  w*  that  maximizes  the  expected  utility   )(
~

wWEU ,   subject  to  the  constraint  

0 ≤ 𝑤 ≤ 1, i.e. no borrowing or short-selling. Note that the optimal asset allocation is independent 

of the initial wealth, 0W . 

It is well known that for a given stock return distribution and for a given riskless interest 

rate, the investment proportion in the stock decreases with an increase in the degree of risk aversion. 

The result that is more relevant to our study, and that is not obvious,   is that for a given value of 

 , the optimal proportion is almost identical across all three tasks, i.e. it is almost invariant to the 
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investment horizon7. For example, if we take the typical case of 2= , we see that the optimal 

investment proportion in the stock is 68.9% in Task 1, 69.0% in Task 2, and 69.2% in Task 3. This 

is a very slight increase in the optimal proportion, certainly below the resolution that can be detected 

experimentally (less than 3% of the subjects answered the questionnaire in resolution of fractions 

of %). Also, the slight influence of the horizon on the optimal proportion is not the same for all 

values of  : for 5.2  the proportion slightly increases with the horizon, while for 3  it 

slightly decreases (see Table III).  

 

Table III 

The optimal allocation to the stock in the three tasks for CRRA investors. Note that 

even though the optimal proportion is not exactly identical across the three tasks, 

because there are no portfolio revisions, they are almost identical. 

Risk aversion 

parameter α 

Optimal Investment Proportion in the Stock, w* 

Task 1 Task 2 Task 3 

0.5 1.000 1.000 1.000 

1.0 1.000 1.000 1.000 

1.5 0.924 0.925 0.926 

2.0 0.689 0.690 0.692 

2.5 0.548 0.549 0.550 

3.0 0.456 0.455 0.455 

3.5 0.390 0.389 0.388 

4.0 0.340 0.339 0.338 

4.5 0.302 0.301 0.300 

5.0 0.271 0.270 0.269 

5.5 0.246 0.245 0.244 

6.0 0.226 0.224 0.223 

6.5 0.208 0.207 0.206 

7.0 0.193 0.192 0.191 

7.5 0.180 0.179 0.178 

8.0 0.169 0.168 0.166 

 

                                                           
7 We assume, like in classic economic models of choices under uncertainty, that the risk aversion parameter 

at the time of the experiment of each subject remains constant and is independent of the distribution of return 

the subject faces (see footnote 10).  
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The explanation for the fact that the optimal proportion is almost constant, even when 

revisions are not possible, is as follows. First, note that the return distributions in Task 2 are just 

the distributions obtained by investing in Task 1 for two periods, assuming i.i.d. (and the returns in 

Task 3 are the 3-period returns).  Suppose, for example, that an investor chooses a proportion of 

5.0=w  in Task 2 (corresponding to the 2-period horizon), and suppose that the stock yields a rate 

of return of 69%, corresponding to a rate of return of 30% on the stock in both periods. In this case, 

the rate of return on the investor’s portfolio is: %625.39%25.105.0%695.0 =+ . In contrast, 

suppose that the investor invests 5.0=w  in the stock for 1 period, as in Task 1, and that after 1 

period he rebalances his portfolio and again invests 5.0=w  in the stock for the second period. In 

this case, his rate of return in the first period is %5.17%55.0%305.0 =+ , and his rate of 

return in the second period is again 17.5% (again, the stock return is assumed to be 30% in both 

periods). Thus, after two periods the portfolio grows by 3806.1175.1175.1 = , i.e. the rate of 

return on the portfolio after two periods is 38.06%. This is a little lower than the return of 39.625% 

obtained with no rebalancing.8 Table IV provides a comparison the entire rate of return distributions 

with and without revisions for the case of 5.0=w . As the table reveals, the return distributions 

are not exactly identical, but they are very close. We should note that the case of 5.0=w  depicted 

in Table IV is the one where the difference between the two distributions, with and without portfolio 

rebalancing, is the greatest9. As the return distributions are very close, this implies that the optimal 

asset allocation is very similar whether portfolio revisions are possible or not.  

                                                           
8This small difference is due to the fact that after the first period the investor who rebalances sells some of 

the stock to maintain 5.0=w , and thus misses some of the gain from the increase in the stock price in the 

second period. 
9 In general, if the total return on the stock is 1R in period 1, and 2R in period 2, and the total risk-free return 

is fR  every period, the portfolio total 2-period return is ( ) 2
21 1 fRwRwR −+  if no revisions are made, and it 

is ( )( ) ( )( )ff RwwRRwwR −+−+ 11 21  if the portfolio is revised after the first period. The difference between 

these two expressions is:  ( ) ( )( )2

21211 ff RRRRRRww −−+− . This expression is maximal (in absolute value) 
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In general, for CRRA preferences we have: 

• When revisions are allowed, the optimal asset allocation of the investor is independent of 

the investment horizon (Mossin 1968, Merton and Samuelson 1974).  

 

• For a given asset allocation w, the distributions of terminal wealth  are almost the same 

with and without revisions  

 

⇓ 
 

• The optimal asset allocation is almost the same with and without revisions  

 

⇓ 

 

• The optimal asset allocation is almost independent of the investment horizon even when 

revisions are not possible. 

 

Table IV 

The portfolio rate of return distribution for a 2-period horizon, with and without 

revision of the portfolio weights after the first period. The case shown is for  w=0.5, 

which is the case where the difference between the two distributions is maximal 

(see footnote 16). 

probability 

Portfolio return 

without revisions 

(w=0.5) 

Portfolio return 

with revisions 

(w=0.5) 

¼ -4.375% -4.938% 

½ 13.625% 14.563% 

¼ 39.625% 38.063% 

 

Indeed, Table III reveals that the optimal investment proportion in the stock with no 

revisions is almost constant across the three tasks. This result is quite general and does not hinge 

on the specific distributions given in our experiment: it holds for different return distributions, and 

for horizons much longer than the 3-period horizon employed in our experiment. For example, if 

one considers asset allocation between the S&P500 index and the 3-month T-bill, employing the 

                                                           

for w=0.5. Obviously, for the cases 0=w  and 1=w  the distributions are exactly identical, as no portfolio 

revisions are made. 
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empirical annual returns and assuming a 10-year investment horizon, the CRRA optimal asset 

allocation is very similar with and without revisions: for 2=  the optimal allocation to stocks is 

91.1% when annual revisions are allowed, and 91.4% without revisions;  for 4=  the optimal 

allocation to stocks is 47.6% when annual revisions are allowed, and 46.1% without revisions. The 

figure in Appendix C shows the optimal asset allocation with and without revisions for alphas in 

the range 0.5-7.5, and provides more detail. As most empirical and experimental evidence suggest 

that the risk aversion parameter is around 1-2 (see Mehra and Prescott 1985, and references within), 

the figure reveals that the optimal weight in the risky asset with and without revisions is almost 

identical. Thus, the optimal asset allocation of a CRRA investor is almost the same whether he 

invests for 1 year or for 10 years, even if portfolio revisions are not allowed.  

 In the context of our experiment, this result yields a clear prediction for the asset allocation 

behavior predicted for CRRA individuals: the investment proportion in the stock should be constant 

(or almost constant) across all three tasks. 

4.  The Experiment 

The experiment is composed of three main choice tasks. In each task there is a risk-free asset 

and a risky stock, with a given return distribution. In each task the subject is asked to allocate his 

investment between these two assets. The instructions that appear before each one of the three tasks 

are: 

Suppose that you have decided to invest $100,000 either in a stock or in a risk-free bond or in any 

combination of these two assets. The possible outcomes at the end of the investment period are as 

given below. Please write the percentage of the $100,000 you choose to invest in each asset, where 

the sum of the two investment proportions should add up to 100%.  

Investment proportion in stock: ______     Investment proportion in risk-free bond: ______ 

 

The three tasks are given in Table I. Note that Task 2 and Task 3 are in fact the 2-period and 3-

period versions of Task 1, under the assumption of i.i.d. returns. In other words, the stock’s return 
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distribution in Task 2 is the return distribution obtained by investing in the stock given in Task 1 

for two periods. Similarly, the risk-free rate in Task 2 is the 2-period return of the risk-free asset of 

Task 1. In the same manner, Task 3 is the 3-period version of Task 1. These three tasks allow us to 

investigate asset allocation choices, and their dependence on the horizon. As in Gneezy and Potters 

(1997) and in Thaler, Tversky, Kahneman, and Schwartz (1997), the tasks are not framed in terms 

of a 1-period, 2-period and 3-period choices, but rather as three different stand-alone tasks. 

Specifically, in Tasks 2 and 3 the subjects have no opportunity to revise their allocations after each 

period. This is important, because as Benartzi and Thaler (1999) have shown, subjects are strongly 

affected by the information presented to them: if the actual investment horizon is 3 periods, but the 

information provided to the subjects is for the 1-period returns, subjects tend to treat the investment 

as a 1-period investment. Thus, to obtain preferences for a 3-period horizon, the 3-period return 

distributions should be presented, which is the setting of our experiment, as well as in the Gneezy 

and Potters and the Thaler, Tversky, Kahneman, and Schwartz experiments. In addition, the cash 

flows of the various choices are obtained immediately, hence subjects do not face anxiety 

corresponding to immediate and far-away risks.10 As detailed in Sections 3 and 4, CRRA and PT 

preferences have very specific and very distinct predictions in this setup. 

The experiment is conducted with large hypothetical gains and losses (the maximum gain in 

Task 3 is $119,700 and the maximum loss is $27,100). This has obvious pros and cons. On the one 

hand, one may argue that subjects are not sufficiently incentivized when payoffs are hypothetical. 

On the other hand, this setting allows us to employ large potential gains and losses, which may be 

perceived by subjects as more realistic. In addition, this may make subjects perceive their decisions 

                                                           
10 This is important, because there is evidence that the date at which the cash flow is obtained may create 

anxiety, implying that the risk aversion parameter of the same subject may increase if the same uncertainty 

is faced shortly (say, next year) relative to the same risk occurring in the distance future, say, ten years from 

now. For  an interesting analyses of this issue see, Van Binsbergen,  Brandt, and Koijen (2012), and Eisenbach 

and Schmalz (2016). In our experiment there is no difference in timing across the three choices: they are all 

framed as choices with immediate cashflows. Hence, potential timing effects are neutralized. 
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as more substantial, relative to the case where the outcomes are a few dollars, even if these are 

translated to actual payoffs for the subject. Most importantly, we wish to create a setup which 

resembles (under obvious limitations) the subjects’ total portfolio asset allocation choice, rather 

than resembling a small-scale bet. As Rabin (2000) argues, individuals may behave very differently 

when large stakes are involved, compared to situations with small or moderate stakes. 

In order to examine whether the subjects pay attention and consider their choices carefully, we 

also included a control task, which is the last task of the experiment. In this control task, given in 

Appendix D, the subject is asked to choose between two alternative investments, where one 

investment dominates the other by First-order Stochastic Dominance (FSD). Thus, any rational 

individual (any expected utility maximizer as well as any cumulative PT expected value maximizer) 

should choose the dominating investment. Indeed, we find that 90% of the subjects chose the 

dominating investment. This indicates that the vast majority of subjects did pay attention and 

understood the instructions. We report only results for those subjects who answered the control task 

correctly. However, as only 10% of the subjects violated FSD, the results do not change much if 

we include all subjects in the analysis. 

The experiment was conducted with a hard-copy questionnaire filled out by pen. Written 

instructions were given in the questionnaire, as well as provided verbally. There was no show-up 

fee. The original questionnaire composed of the four tasks discussed above is provided in the online 

appendix.  

Subjects 

The subjects are professional investors, and economics/business students. We have four groups of 

subjects, from three different countries: 

Group 1: 57 undergraduate students from China (Harbin Institute of Technology, HIT), average 

age 24.4, 34% male. 
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Group 2: 17 master students from Hong Kong (Hong Kong Baptist University), average age 28.2, 

67% male. 

Group 3: 61 master students (MBA and economics) from Israel (Hebrew University), average age 

29.5, 75% male. 

Group 4: 68 professional investors from Israel (Harel Mutual Fund Company), average age 37.2, 

81% male. 

There are a total of 203 subjects. Of these, 184 (90%) answered the control task (with FSD 

dominance, see Appendix D) correctly. Another two subjects failed to complete the entire 

questionnaire. Thus, we are left with 182 subjects who completed the questionnaire and answered 

the control task correctly. The choices across the groups of subjects from various cultures and with 

different experience in the capital market are quite similar, which increases the reliability of our 

results. Below we report the results combined across all four groups. Appendix E provides the 

results for each subject group separately. The individual level data, including group affiliation is 

provided in the online appendix. 

5.   Experimental Results 

While our focus is the diversification choices at the individual level, the average investment 

proportions in the risky asset are important, as they are relevant for asset pricing. We find the 

following average investment proportions in the stock in the three tasks (across all 182 subjects): 

%1.58%0.59%7.53 321 === www , 

where the sub-indices refer to the task number. The average proportion increases somewhat from 

Task 1 to Task 2, and slightly decreases from Task 2 to Task 3. While the increase in the average 

proportion from Task 1 to Task 2 is statistically significant (matched-pair t-value 2.44), the decrease 
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from Task 2 to Task 3 is not (t-value -0.12).11 In general, the average proportions do not change 

much across tasks. These average proportions may be consistent with most subjects having CRRA 

preferences, where the small variation in the proportions across tasks is due to a small group of 

subjects with preferences different than CRRA. However, these average proportions may also be 

consistent with many other possible models, including a scenario where some subjects have PT 

preferences.  Thus, in order to reach more definitive conclusions about preferences one cannot rely 

only on the average proportions, and we therefore turn to analyze the results at the individual level, 

which is our main experimental focus. 

Table V 

Asset allocation patterns observed in the experiment. w is the investment proportion 

in the stock, and the sub-index refers to the task number. Patterns 1 and 2 correspond 

to CRRA and approximate CRRA preferences, respectively. Patterns 3-6 

correspond to PT and approximate PT preferences, for a wide range of value 

function parameters and for different assumptions regarding the reference point. 

Pattern Preference Condition on proportions in 

the three tasks 

Number of 

subjects 

(%) 

1 Exact CRRA 321 www ==  59 32.4 

2 Approximate CRRA 1.0minmax −ww  80 44.0 

3 

PT with reference 

point either at the 

future value of wealth 

or at the expected 

value of wealth 

0,0,0 321 === www  4 2.2 

4 

PT with reference 

point at future value 

of wealth 

1,0,0 321 === www  0 0 

5 

PT with reference 

point at future value 

of wealth 

1,1,0 321 === www  2 1.1 

6 
PT with reference 

point at current wealth 

25.035.0 1  w  

30.040.0 2  w  or 12 =w  

30.040.0 3  w  or 13 =w  

5 2.7 

                                                           
11 It is interesting to note that Thaler, Tversky, Kahneman, and Schwartz (1997) observe exactly the same 

pattern for the average proportions: a significant increase in the average proportion allocated to the stock 

from the short horizon to the medium horizon, and a slight decrease from the medium horizon to the long 

horizon. The results are compared in more detail in the next section. 
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The analysis in Section 3 shows that CRRA preferences predict investment proportions 

that are practically constant across all tasks, i.e. 321 www == , regardless of the risk aversion 

parameter, namely for all CRRA individuals. In contrast, PT preference predicts a jump of the 

investment proportion in the stock to 100%, either in Task 2 or in Task 3, depending on the 

preference parameters. Table V summarizes the choice patterns predicted by the different models, 

and the number of subjects with investment allocation choices conforming to each pattern. 

      Pattern 1, where the investment proportions are exactly equal across all three tasks, is consistent 

with CRRA preferences. While there are slight differences in the theoretically optimal proportions 

across tasks (because there are no revisions, see Table III), these differences are in the order of 

0.1%. As almost none of the subjects provided their answers with this degree of detail (more than 

97% of subjects answered in whole percentage numbers), we consider this pattern consistent with 

CRRA. As reported in the table, 59 subjects (32.4%) follow this choice pattern. For each of these 

subjects we calculated the relative risk aversion coefficient,  , that corresponds to his/her choice. 

We find an average   value of 1.96, which is similar to values previously reported in the literature 

(see Mehra and Prescott 1985, and references within).12 The standard deviation of   is 2.54, 

indicating a large degree of heterogeneity, even within CRRA subjects. 

 25 of the 59 subjects following pattern 1 chose 1321 === www , i.e. they chose to invest 

100% in the stock in all three tasks. While this pattern is consistent with CRRA preferences with 

𝛼 ≤ 1 (see Table III), it could, in principle, be also considered consistent with PT, with 𝜆 ≤ 1.5 

(see Tables II, AI, and AII). However, we do not consider this choice pattern as supporting PT for 

two reasons. First, Estimates reported in the literature of the loss aversion coefficient,  , exceed 

                                                           
12 This may be an overestimation of  , because subjects who chose to invest 100% in the stock may have 

low  ’s and actually wanted to invest more than 100% in the stock (by borrowing at the risk-free rate), 

which was not possible in our experiment. 
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1.75, and typically also exceed 2.13 While we should allow for heterogeneity in   across subjects, 

we would expect to have 𝜆 > 1.5 for most PT investors. Thus, according to PT most choices should 

be according to patterns 3-6 (see below), and only a small minority should be 1321 === www . 

Observing only a few choices of patterns 3-6, implies that we are observing only the subjects at the 

left tail of the 𝜆 distribution, but not the subjects at the bulk of the distribution with 𝜆 > 1.5. This 

does not seem reasonable. Second, while a small value of 𝜆 is technically consistent with PT, this 

is in a somewhat degenerate sense, because 𝜆 ≈ 1 actually implies almost linear preferences. 

 The second pattern (see pattern 2 in Table V) allows for some small variation in the 

proportions across tasks, possibly due to “noise”, or bounded rationality errors. We consider all 

patterns where the maximum difference between the three proportions is smaller than 10% (i.e.

1.0minmax −ww ), as “approximately consistent” with CRRA preferences. We find that 80 

subjects (44%) fall into this category. Note that the 59 subjects in pattern 1 are a subgroup of the 

80 subjects in pattern 2, i.e. when we allow for small variations in the allocations, 21 subjects are 

added to the 59 subjects in pattern 1. 

 We turn now to the choice patterns predicted by PT. We do not confine ourselves to the 

specific PT parameters suggested by Kahneman and Tversky (1992), but rather, we consider a wide 

range of possible parameters 𝛼, and all possible values of   larger than 1.75 (see footnote 13).  

          For 75.1  PT with a reference point at the future value of wealth predicts 01 =w  in Task 

1, see Panel A of Table II.   The investment proportion in the stock then jumps to 1 at either Tasks 

2 or 3, or remains at 0, depending on the exact values of    and   (see Panels B and C of Table 

II). Pattern 3 (with weights 0, 0, 0), pattern 4 (with weights 0, 0, 1), and pattern 5 (with weights 0, 

                                                           
13 Kahneman et. al. (1990), and Tversky and Kahneman (1991) estimate that  is in excess of 2. Tversky and 

Kahneman (1992) estimate   at 2.25, and Pennings and Smidts (2003) estimate it as 1.8. 
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1, 1)  of Table VI correspond to these three cases. Pattern 3 is predicted for all PT investors with a 

reference point at the future value of wealth. In aggregate, only 6 subjects (3.3%) follow one of 

these three patterns. Thus, even if we allow for a wide range of PT parameters, there is very little 

support for PT with a reference point at the future value of wealth. 

 When the reference point is at the current wealth, and  75.1 , 1w  is between 0.30 to 

0.33 (see Panel A of Table A1), 2w  is either 0.35 or 1, and 3w  is either 0.37 or 1. In order to allow 

for some noise, or bounded-rationality errors (as we allow for approximate CRRA in pattern 2), we 

allow for deviations from these values and define pattern 6 as: 25.035.0 1  w , 

30.040.0 2  w  or 12 =w , and 30.040.0 3  w  or 13 =w . Notice that PT subjects with a 

reference point at current wealth should follow this pattern whether they employ the objective 

probabilities or the CPT decision weights (see the table in Appendix B). Only 5 subjects (2.7%) 

follow pattern 6. We should note that some cases of pattern 6 may also be consistent (and are a 

special case of) patterns 1 and 2. For example, a subject who chooses 35.0321 === www  is 

approximately consistent with PT (because he is included in pattern 6), but is also perfectly 

consistent with CRRA. Thus, there is some overlap between the choice patterns, and such a subject 

would be included in patterns 1, 2, and 6.   Of the 5 subjects following pattern 6, four are also 

consistent with approximate CRRA, i.e. they do not exhibit any “jump”. Thus, even when we allow 

for a wide range of PT parameters we find very weak support for PT:  in total,  at most 6% of the 

subjects are consistent with PT. We say “at most” because some of the subjects classified as PT 

subjects also fall in the CRRA category. 

 The other subjects who do not fall into any of the categories in Table V, display a variety 

of choice patterns. 38 subjects (21%) monotonically increase their investment proportion in the 

stock with the horizon, i.e. 321 www   (but not as predicted by PT). For 20 subjects (11%) the 
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investment proportion monotonically decreases: 321 www  . 29 subjects display non-monotonic 

proportions: for 18 subjects we have 321 www  , and for 11 subjects 321 www  .14 

 To summarize, the most dominant choice pattern is pattern 1, where all proportions are 

exactly identical. 32.4% of the subjects are exactly consistent with CRRA, and 44% are 

“approximately consistent” with CRRA. At most 6% of the subjects are approximately consistent 

with PT.  

6.  Relation to the Existing Literature 

We find evidence supporting CRRA preferences for a relatively large proportion of the 

subjects. This finding is consistent with previous empirical and experimental findings: Arrow 

(1971) concludes that the relative risk aversion is almost constant, implying CRRA. Friend and 

Blume (1975) find support for CRRA based on survey data regarding households’ asset allocations. 

Gordon, Paradis, and Rorke (1972), Kroll, Levy, and Rapoport (1988), and Levy (1994) find 

experimental evidence in support of CRRA. 

We find very weak support for PT preferences: at most 6% of the subjects are consistent with 

PT, and about half of them are also consistent with CRRA (4 of the 5 subjects following pattern 6). 

This may seem surprising, in light of the vast experimental support for PT. How can this result be 

reconciled with the literature? We believe that the most plausible explanation is that individuals 

behave differently when faced with small or modest bets (as in most experimental studies 

supporting PT) and when faced with large stakes, as in the present experimental setup. The 

importance of the scale of the amount at stake on choices is best summarized by Rabin (2000 p. 

1286) who writes:  

                                                           
14 There are a few subjects who do not fall into any of these categories, for example subjects with 

321 www = , 321 www = , etc. 
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Expected utility theory may well be a useful model of the taste for very large scale 

insurance. Despite its usefulness, however, there are reasons why it is important for 

economists to recognize how miscalibrated expected utility is as an explanation of 

modest-scale risk aversion. 

 

Another possible explanation is that much of the experimental support for PT comes from 

experiments with either positive or negative prospects, rather than with mixed prospects. Indeed, 

Levy and Levy (2002) find support for PT when employing prospects in the positive domain or in 

the negative domain separately, but find that most subjects contradict PT when mixed prospects are 

employed. Needless to say, most real-life decisions involve both potential gains and potential 

losses, and this is also the framework of the present study. It is also possible that PT is 

approximately consistent with aggregate results, while it does not provide a good description of 

choice at the individual level. This is what Diecidue, Levy and van  de Ven (2015) find. 

The two papers most closely related to the present study are those by Gneezy and Potters (1997) 

(GP), and by Thaler, Tversky, Kahneman, and Schwartz (1997) (TTKS). Both of these studies 

experimentally investigate the influence of the investment horizon on the average asset allocation. 

They find that when subjects are presented with longer horizons, on average they tend to increase 

their investment proportions in the stock. This is consistent with myopic loss aversion – when 

individuals with PT preferences observe short-horizon returns they are confronted with a large 

probability of a loss, and therefore they tend to avoid the stock; as the horizon increases, the 

probability of a loss decreases, and individuals tend to increase their investment proportions in the 

stock (Benartzi and Thaler 1995, 1999). At the aggregate level, this is similar to what we observe 

here: the average proportion in the stock increases from 53.7% in Task 1 to 59% in Task 2 (and 

then slightly decreases at Task 3).  However, as discussed above, these aggregate results may also 

be consistent with most subjects having CRRA preferences, and the relatively small increase in the 

average investment proportion being driven by a (potentially small) group of investors with non-

CRRA preferences. TTKS report a large heterogeneity in subjects’ behavior (see their Figure 1, p. 
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655). This implies that individual behavior may be very different than the averages reported. Thus, 

only by looking at decisions at the individual level we can reach more definitive conclusions 

regarding preferences. In the present study we can predict not only that the optimal investment 

allocation to the stock should increase with the horizon, but also the exact way that it is predicted 

to increase.  Thus, the  two main distinctions between GP and TTKS and the current study is that 

we analyze choices at the individual level, and that we have very clear predictions about the exact 

asset allocation values implied by PT. 

One key difference between GP and TTKS is that GP investigate asset allocation between a 

risky stock and a risk-free bond (as in the present study), while TTKS study the asset allocation 

between a risky stock and a risky bond (which is less volatile than the stock, but still involves risk). 

This has an important implication for the optimal asset allocation of a PT investor: when the bond 

is risk-free, a dramatic jump in the asset allocation is theoretically predicted, as discussed in Section 

2. Indeed, in the GP setup PT also implies a jump from 0% to 100% in the stock.15 When the bond 

is risky (as in TTKS, and also in Benartzi and Thaler 1995) the optimal asset allocation may change 

                                                           
15 In the Gneezy and Potters (1997) experiment subjects have to decide what part of an endowment they 

would like to allocate to a stock that yields a rate of return of -100% with probability 1/3, and a rate of return 

of 250% with probability 2/3 in the one-period setting. If the proportion allocated to the stock is w, the 

expected value is:    5.22
3
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  , and w=1 for 
2

5.2 

   . Similarly, in the three-period setting of their experiment, 

some algebraic manipulation reveals that the optimal solution is w=0 for  





38

5.012465.7



++
 , and 

w=1 for  





38

5.012465.7



++
  (the returns are additive in the GP setting). For   1= , these threshold 

values are  =1.25 in the one-period setting and  =1.56 in the three period setting. Thus, subjects with 1=  

and 25.156.1    should switch from 0 investment in the stock in the one-period setting to 100% in the 

stock in the three-period setting. Subjects with 56.1  should not allocate any money to the stock, in either 

setting. 
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more gradually. This is an advantage of the GP setup, and the setup employed here: it yields very 

clear and testable theoretical predictions. 

 It is interesting to note that TTKS find that: “…subjects made exactly the same choices (on 

average) when they were allocating assets one period at a time or when they were committing 

themselves for 400 trials…” (p. 656). It is well-known that this behavior is consistent with CRRA 

preferences when revisions are allowed. In Section 3 we show that even when revisions are not 

allowed, as in the final decision in the TTKS setup, and as in our experiment, CRRA implies almost 

the same behavior. Thus, this finding by TTKS actually seems to lend support for CRRA. 

7. Conclusions 

This study employs the setting of investments for different horizons to theoretically analyze the 

predictions of two main contending preferences: Constant Relative Risk Aversion (CRRA) 

preferences, and Prospect Theory (PT) preferences (with and without decision-weights, and with 

various alternative reference points). We then experimentally investigate whether subjects’ choices 

conform to these predictions. The special feature of this setup is that it yields very clear predictions 

for the individual-level behavior of CRRA and PT preferences. We show that for CRRA 

preferences, regardless of the risk aversion parameter, the asset allocation should remain virtually 

constant at different horizons, even when revisions are not allowed. In contrast, we show that for 

PT preferences the optimal allocation to the risky stock should “jump” dramatically and 

discontinuously from about 30% (or 0%, depending on the reference point) to 100% (or even more, 

if borrowing is possible) as the horizon increases. It is important to note that this jump does not 

require a very long horizon, it already occurs at shifts from a one-year horizon to a two-year or a 

three-year horizon.  These theoretical results are quite general: they do not depend on the specific 

return distributions, the specific PT parameters, and whether objective probabilities or CPT 

decision-weights are employed.  It is important to emphasize that the jump in the asset allocation 
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to the risky asset is a fundamental characteristic of PT and it occurs even if the horizon does not 

change, e.g., if the stock distribution is fixed and the risk-free interest rate increases. Generally, we 

do not obtain such a jump in the expected utility framework.    

Like in Gneezy and Potters (1997) and in Thaler, Tversky, Kahneman, and Schwartz (1997),  

in our experiment each subject faced three choices, not knowing that they correspond to various 

horizons (or to a combination of several lotteries). Thus, by the selected choices we can investigate 

the horizon effect on asset allocation, neutralizing the effect of the timing of cashflows (see, for 

example, Van Binsbergen,  Brandt, and Koijen (2012), and Eisenbach and Schmalz (2016)). We 

find that 32% of the subjects’ choices are exactly consistent with the predictions of CRRA. If we 

allow for some bounded-rationality errors, this figure increases to 44%. We find that at most 6% of 

the subjects are consistent with PT, even if we allow for some bounded-rationality errors, a wide 

range of PT parameters, and different assumptions regarding the reference point. This is an upper 

bound, because about one half of the subjects consistent with PT are also consistent with CRRA.  

This very weak support for PT is surprising, given the large number of experimental studies 

supporting PT. We suspect that this difference may be partly due to the fact that many of these 

studies investigate the domain of gains and the domain of losses separately, while we employ mixed 

prospects. More importantly, it is possible that loss aversion plays an important role in setups where 

gains and potential losses are modest (e.g. a few tens of dollars), but when larger amounts are at 

stake, such as lifelong savings, CRRA provides a much better model of preferences. In his famous 

paper, Rabin (2000) shows that CRRA (and expected utility in general) are not consistent with 

actual behavior “in the small” and “in the large”: realistic risk aversion over modest outcomes 

implies absurd risk aversion over large outcomes. We complement this result by showing that PT 

is also not consistent with behavior both “in the small” and “in the large”: while PT may explain 

choices over modest outcomes very well, in a setting of lifelong savings with large outcomes it 
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yields very unrealistic predictions. It is perhaps time to develop unifying models of preference that 

merge these very different behaviors “in the small” and “in the large”. 

Our findings have several key implications. The first is about the equity premium puzzle 

(Mehra and Prescott 1985). Benartzi and Thaler (1995) suggest that this puzzle may be solved by 

myopic loss aversion: PT preferences and a short horizon (or a high evaluation frequency). The 

lack of experimental support that we find for PT preferences “in the large” casts doubt on the 

validity of this explanation. We must conclude, like Mehra and Prescott (2003), that the equity 

premium puzzle is yet to be solved.  

The second implication of our results is about the important role of heterogeneity. We find that 

subjects are very different not only along one dimension (such as the degree of risk aversion), but 

rather they follow completely different patterns of the asset allocations as a function of the horizon 

(some monotonically increasing the allocation to the stock with the horizon, some monotonically 

decreasing it, and some changing it non-monotonically). As Lucas (1976), Kirman (1993), 

Blackburn and Ukhov (2013), and others have argued, one should be very careful about reaching 

conclusions about the aggregate behavior of very heterogeneous individuals. 

Having said that, we find that CRRA is the preference class that best describes subjects’ 

behavior when large outcomes are at stake. Thus, if one must choose a single preference to model 

choice “in the large”, CRRA seems to be the best alternative, by far. 

Finally, when periodic portfolio revisions are possible, CRRA preferences imply that the 

optimal asset allocation is independent of the investment horizon. We show that this result 

approximately holds even when revisions are not possible. Thus, the “stocks for the long run” 

argument does not hold for CRRA investors, either with or without revisions. PT may explain the 

preference for stocks as the horizon increases, but this is not in the spirit of the “stock for the long 

run” argument, as PT predicts that investors should dramatically switch from a low investment 

proportion in the risky asset to a proportion of 100% (or more, if possible), once the investment 
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horizon exceeds 2-3 years. This is an unrealistic result which has no empirical or experimental 

support.   
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Appendix A: Optimal Asset Allocation for a PT Investor with Alternative Reference Points 

Case 2: Reference point at Current Wealth  

 In this case we also obtain a discontinuous jump in the optimal investment proportion in 

the stock. The difference relative to Case 1 (described in the text)  is that the jump is not from 0 to 

1, but rather from some positive value (about 1/3 for the distributions given in the experiment) to 

1. Again, this result is general, and does not depend on the specific return distribution. In what 

follows we will first provide the general analysis, and then discuss the specific tasks used in the 

experiment. 

As in Case 1, the terminal wealth is given by: ( ) fT RwRwWW −+= 1
~~

0 . However, the 

change of wealth is calculated relative to current wealth, 0W , i.e.: 

 ( )  ( ) 1~
11

~~~
000 −+−=−−+=− fffT RRRwWRwRwWWWx .  (10) 

We denote the excess return on the stock by fRRr −
~~   and 1− ff Rr . Without loss of 

generality, we take 10 =W . Then, we have: 

 frrwx += ~~
.         (11) 

We assume that the expected excess return is positive   0~ rE  and that the interest rate is positive

0fr . Thus, if r is positive, then the change of wealth, x, is positive for any 01  w . If r is 

negative, x can be either positive or negative, depending on w. Let us denote the minimum value of 

r~  by minr . In any non-degenerate situation we have 0min r  (if 0min r , the minimum return 

on the stock is higher than the risk-free return, and the stock thus dominates the risk-free asset by 

First-order Stochastic Dominance). minr  is also bounded from below, because the rate of return on 

the stock can’t be lower than -1  (-100%).  



 

 

 

From eq.(11) we conclude that if 
minr

r
w

f
−  then x~  is positive for any value of r~ , and we have: 

 ( )


+=

min

)(

r

f drrfrwrEV


.       (12) 

If 
minr

r
w

f
−  then x~ can be either negative or positive. Specifically, it is negative for 

w

r
r

f
− , 

and it is positive for 
w

r
r

f
− (see eq.(11)). Thus, in the range 

minr

r
w

f
− we have: 

 ( )( ) ( )


−

−

+++−−=

w

fr

f

w

fr

r

f drrfrwrdrrfrwrEV )()(

min


 .   (13) 

The PT expected value given by eqs.(12) and (13) is continuous across the two ranges, but its 

derivative with respect to w is not. Let us analyze each of these ranges separately.  

Range 1  
minr

r
w

f
− : 

The first and second derivatives of the EV in eq.(12) with respect to the investment proportion, w, 

are:           (14) 

     ( )


−
+=





min

1
)(

r

f drrfrrwr
w

EV 
    and  ( ) ( )


−

+−=




min

22

2

2

)(1

r

f drrfrrwr
w

EV 
 . 

The first derivative may generally be either positive or negative, because r is negative in the range 

 0,minr  and positive in the range [0, ∞]. The second derivative is negative: notice that the integral 

in the second derivative is positive (because 0+ frwr ), and the PT risk-aversion in the domain 



 

 

 

of gains implies 10  . Also, the first derivative at w=0 is positive (because the expected value 

of r is positive). Thus, in the range 







−

min

,0
r

r f
 the maximum value of EV is obtained either at 

some internal point min/0 rrw f− , or at the end point min/ rrw f−= . Notice that the 

existence of a maximum point in the range 







−

min

,0
r

r f
 is independent of the distribution )(rf , 

i.e. of the investment horizon, and of the preference parameters (although the exact location of the 

maximum point does depend on these factors). 

When we consider the whole range of the investment weight in the stock, 01  w , the 

above maximum point may be either the global maximum or a local maximum, depending on the 

behavior of the EV at values of w exceeding min/ rrf− : if the EV decreases in the range 

min/ rrw f− , then the above maximum point is global. However, if the EV increases in the range 

min/ rrw f− , the global maximum may be in found in this second range. Thus, we turn next to 

analyze the EV in the range min/ rrw f− , namely, in the general case  where the change of 

wealth, x, may be either negative or positive.  

Range 2 
minr

r
w

f
− : 

In this range, the derivative of the EV in eq.(13) with respect to w is given by16:   

                                                           
16 Notice that as the limits of the integrals in eq.(13) are also functions of w, one should employ the Leibnitz 

integral rule. In our specific case this does not change the value of the derivative, because the value of the 

function integrated at the integral limit which depends on w is zero. Let us elaborate. The Leibnitz rule is: 
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It is convenient to divide the second integral to its positive and negative parts:   

           (16) 
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f




The first two terms above are negative, while the third is positive: in the first term both ( )frwr +−  

and –r are positive and we have a minus sign in front of the integral, hence the first term is negative; 

in the second and third terms frwr + is positive, while r is negative in the second term, but is 

positive in the third term. The overall sign of the derivative in eq.(16) depends on the relative 

magnitudes of these three terms.  

                                                           

If we take, for example, the derivative of the first term in eq.(13), we have ( )( ) )(),( rfrwrrwg f


+− , and 

therefore: 
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The first term is equal to 0 because the value of the function g at the upper limit is 0, and the second term is 

0 because the lower limit does not depend on w. Thus, we are left with only the third term. Similarly, in the 

derivative of the second term in eq.(13), the first term is 0 because the upper limit does not depend on w, and 

the second term is 0 because the value of the function g at the lower limit is 0, and again, we are left with 

only the third term, which is ( )


−

−
+

w

fr

f drrfrrwr )(
1
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For short horizons the probability that the excess return r is negative is typically substantial. 

Thus, the first two terms, which are integrals over r in the range  0,minr  are relatively large, 

because of the overweighing of the first term by the loss aversion factor  , and the overall 

derivative may be negative. Thus, for short horizons the EV my decrease in the range 

min/ rrw f− , implying that the maximum EV is obtained in the range min/0 rrw f− . 

However, as the horizon increases, the probability that the excess return is negative decreases to 0, 

and the first two terms in eq.(16) become smaller, while the third term becomes larger. Thus, as the 

horizon increases the derivative (16) becomes positive, for any value of min/ rrw f− , and the 

optimum  investment  weight  jumps from somewhere in the range    min/*0 rrw f−  to 

1*=w .17   

                                                           
17Actually, if borrowing at the risk-free rate is possible (which is not the setup of our experiment) and the 

reference point is at the current wealth, as the horizon increases the optimal investment proportion in the 

stock becomes infinite. To see this, it is helpful to analyze the derivative in eq.(16) in the case  frw  . Note 

that eq.(16) can be rewritten as: 
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When frw  , this expression reduces to: 
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  . By integration over w, this implies that for large w we 
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  , just like in the case of a reference point at the future 

value of wealth (see eq.(4)). As the horizon increases, the probability of a negative excess return shrinks, and 

for any   there comes a horizon where  
−



−

0

0

))(()( drrrfdrrrf   , i.e. the square brackets become 

positive. This implies that for large w the derivative is positive and constant, i.e.  it is optimal to borrow at 

the risk-free rate and invest an infinite amount in the stock. Note that the convergence to the case of a 

reference point at the future value of wealth holds for frw  . For lower values of w, the optimal asset 

allocation is different when the different reference points are employed.    



 

 

 

 Thus, like in Case 1, with the reference point at the future value of wealth invested in the 

risk-free asset, we again obtain a jump in the investment weight in the risky asset, albeit not from 

zero to 1 but from some positive value smaller than 1 to 1. Before discussing the optimal asset 

allocation in the tasks employed in our experiment, let us first take a short detour to address the 

following question: From a practical/empirical perspective, how long does the horizon have to be 

for the jump to occur? After all, if the jump occurs at a horizon of 100 years, this is not of much 

practical interest. In order to answer this question, we perform the following analysis employing 

the empirical return distributions. We consider the optimal asset allocation between the S&P500 

index and 3-month T-bills. Figure A1 shows the optimal proportion in the index as a function of 

the investment horizon, for various PT parameters. The T-year return distribution for the stock 

index is estimated by randomly drawing 50,000 sets of T returns (with replacement) from the set 

of annual returns on the S&P500 index during 1997-2016. The T-bill rate is taken as the average 

annual rate over this period (2.14%). For a PT investor with λ=3 and α=0.88 the optimal investment 

proportion in the stock index is 9% if the horizon is 1 year, and it jumps to 100% if the horizon is 

2 years or longer. (For a PT investor with the Tversky and Kahneman (1992) parameters of with 

λ=2.25 and α=0.88, which is less loss-averse, the optimal proportion in stocks is 100% already at 

the 1-year horizon, and remains 100% at all horizons). For an investor with λ=3 and α=0.6 the 

optimal investment proportion in the stock index is 5% if the horizon is 1 year, 13% for 2 years, 

27% for 3 years, and it then jumps to 100%. Similarly, other PT preference parameters also yield 

dramatic jumps in the optimal allocation. Figure A1 reveals that the jump typically occurs at very 

short horizons of 2-3 years. Even with rather extreme loss aversion, λ=5, and high risk aversion, 

α=0.6, a PT investor with a horizon longer than 6 years should invest 100% in stocks (and if 

borrowing is possible, up to the maximal leveraged position possible). 

 

 



 

 

 

 

 

Figure A1: The optimal asset allocation between the S&P500 index and 3-month T-

bills for PT investors as a function of the investment horizon. We employ the empirical 

S&P500 returns during 1997-2016 to construct the return distributions at various 

horizons. We construct the T-year return distribution by randomly drawing 50,000 sets 

of T returns (with replacement) from the set of annual returns on the S&P500 index 

during 1997-2016. The T-bill rate is taken as the average annual rate over this period 

(2.14%). The optimal allocation to the stock typically grows gradually with the 

horizon to a value in the range 10%-30%, and then “jumps” dramatically to 100%. 

  

We should note that this dramatic jump in the asset allocation contrasts the common practice 

of the widely popular life cycle mutual funds. These funds gradually decrease the proportion 

allocated to risky assets every few years, as the savers become older, and the expected horizon 

shortens. In contrast, as Figure A1 shows, for the case where the reference point is at the current 

wealth, PT advocates an allocation of 100% in stocks for all but the shortest horizons, and then a 



 

 

 

sharp decrease to an allocation of only 10%-30% in stocks for very short horizons (or to 0% if the 

reference point is at the future value of wealth). 

 Let us now return to the specific prospects employed in our experiment. In Task 1 the stock 

yields either R=1.3 or R=0.9 with equal probabilities. If R=1.3, we have: 

( )   05.025.0105.105.13.1 +=−+−= wwx ,    (17) 

and if R=0.9 we have: 

 ( )   05.015.0105.105.19.0 +−=−+−= wwx .    (18) 

(Recall that without loss of generality we take the initial wealth to be  10 =W ). While the change 

of wealth in eq.(17) is positive for any w, the sign of the change of wealth in eq.(18) depends on w: 

this expression is positive (i.e. it is considered as a gain) if w<1/3, however, if w>1/3,  x is negative 

(i.e. a loss). Thus, we can write the EV in Task 1 as: 
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
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

. (19) 

To see that this expression implies corner solutions, it is instructive to first concentrate on the 

simplified case of a piecewise linear value function where 1=  (as discussed by Benartzi and 

Thaler 1995). In this case, plugging 1=  simplifies eq.(19) to: 
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.  (20) 



 

 

 

As in the general case, the EV is continuous in w, but its derivative is not. Figure A2 plots the EV 

in eq.(20) as a function of w. The EV increases linearly up to the point w=1/3. For w>1/3 the EV 

either continues to increase or starts to decrease, depending on the sign of the expression 0.25-

0.15λ. If λ<0.25/0.15=1.66, this expression is positive and the EV continues to increase linearly in 

the range w>1/3, implying that the optimal investment proportion in the stock is 1. If λ>1.66 this 

expression is negative, implying that the EV decreases linearly in the range w>1/3, and thus that 

the maximum EV is obtained at w=1/3. 

 

 

Figure A2: The PT expected value as a function of the investment proportion in the 

stock in Task 1. The reference point is the current wealth, and a piecewise linear value 

function is employed ( 1= ). There are two possible optimal allocations:  w=1/3 for 

λ>1.66, and w=1 for λ<1.66. 

 

 



 

 

 

 When 1  the results are similar, but as the EV is not linear in w, the maximum EV may 

be obtained at values lower than 1/3. The derivative of the EV with respect to w in the range w<1/3 

is:  

( ) ( ) 11
05.015.015.005.025.025.0

−−
+−−+=



 
 ww

w

EV
,  (21) 

and the maximum EV in this range is obtained at18: 
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In the range w>1/3 the derivative is either positive for all w, or negative for all w, depending on the 

values of   and  .19 Thus, the optimal proportion is either given by eq.(22), or is 1. 

For 88.0=  the optimal investment proportion in the range w<1/3 is obtained at: 

                                                           

18 Equating the derivative in eq.(21) to zero yields: 
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. Note that for 

1→  we obtain w*=1/3 as a special case of eq.(22). 
19 In the range w>1/3 the derivative is: 
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. Equating this derivative to zero (in search 

for a maximum point) yields: 
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w . A little algebra reveals that this expression is 

either negative (if 
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) or larger than 1 (if 
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). Thus, there is no maximum (or minimum) point 

in the range 1>w>1/3. Note that for 05.0w the EV becomes    15.025.0
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−= wEV , and continuous 

to grow (or decline) indefinitely with w. 
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Thus, for 88.0=  there are two possible solutions in Task 1: either 0.32 or 1, depending on the 

value of  . Panel A of Table AI provides the optimal asset allocation in Task 1 for various 

combinations of   and  , when the reference point is taken as current wealth. Panels B and C 

provide the corresponding optimal asset allocations in Tasks 2 and 3 (calculated numerically). 

Comparing the three panels of Table AI, corresponding to the case of a reference point at current 

wealth, reveals similar  “jump” pattern  in the optimal asset allocation as in Case 1, where the 

reference point is at the future value of wealth. As the horizon increases, the optimal proportion in 

the stock jumps dramatically from values of about 1/3 to 1. For example, for the Tversky and 

Kahneman (1992) parameters of  25.288.0 ==   the optimal investment proportion in the 

stock increases from 0.32 in Task 1 to 0.35 in Task 2, and then jumps to 1 in Task 3. The results 

are similar when CPT decision weights are employed instead of the objective probabilities, as 

shown in table A2. 

To summarize Case 2, with a reference point at current wealth, we prove that in the general 

case there is a jump in the PT optimal allocation to the risky asset as the horizon increases. The 

jump is from some value smaller than (or equal to) −𝑟𝑓/𝑟𝑚𝑖𝑛 for short horizons to  1 (or more, if 

borrowing is possible) for longer horizons.  

 

 

 



 

 

 

Table AI 

Optimal Investment Proportion in the Stock in the three tasks for PT Preferences with 

Reference Point at the Current Wealth ( 0W ). The highlighted cells correspond to the 

Tversky and Kahneman (1992) parameters of  𝛼 = 𝛽 = 0.88   𝜆 = 2.25. Objective 

probabilities are employed. 

 

A: Task 1 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.30 

1.50 1.00 1.00 1.00 0.33 0.33 0.33 0.32 0.31 0.30 

1.75 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 

2.00 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 

2.25 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 

2.50 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 

2.75 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 

3.00 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 

 

B: Task 2 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 0.35 0.35 0.35 

2.25 1.00 1.00 1.00 0.35 0.35 0.35 0.35 0.35 0.35 

2.50 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

2.75 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

3.00 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

 

C: Task 3 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.37 



 

 

 

Table AII 

Optimal Investment Proportion in the Stock in the three tasks for PT Preferences with 

Reference Point at the Current Wealth ( 0W ) and with CPT decision weights, 

69.0,61.0 ==  .  

A: Task 1 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 0.31 0.30 0.28 

1.50 1.00 0.33 0.33 0.33 0.33 0.32 0.31 0.30 0.28 

1.75 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 0.28 

2.00 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 0.28 

2.25 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 0.28 

2.50 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 0.28 

2.75 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 0.28 

3.00 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.30 0.28 

 

B: Task 2 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.75 1.00 1.00 1.00 1.00 1.00 1.00 0.35 0.35 0.34 

2.00 1.00 1.00 1.00 0.35 0.35 0.35 0.35 0.35 0.34 

2.25 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.34 

2.50 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.34 

2.75 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.34 

3.00 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.34 

 

 

C: Task 3 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.37 

2.50 1.00 1.00 1.00 1.00 1.00 0.37 0.37 0.37 0.37 

2.75 1.00 1.00 1.00 0.37 0.37 0.37 0.37 0.37 0.37 

3.00 1.00 1.00 0.37 0.37 0.37 0.37 0.37 0.37 0.37 

 



 

 

 

Case 3: Reference point at the Expected Value of Wealth  

 In this case the reference point depends on the return distributions under consideration, and 

on the subject's asset allocation choice. If the investor invests a proportion w in the stock, then his 

terminal wealth is: 

𝑊̃𝑇 = 𝑊0[𝑤𝑅̃ + (1 − 𝑤)𝑅𝑓], and the expected value of terminal wealth is: 

 𝑊̅𝑇 = 𝑊0[𝑤𝑅̅ + (1 − 𝑤)𝑅𝑓] . The change of wealth relative to this reference point is: 

 𝑥̃ ≡ 𝑊̃𝑇 − 𝑊̅𝑇 = 𝑊0𝑤[𝑅̃ − 𝑅̅].       (24) 

Denoting the deviation of the stock’s return from its average return by 𝑧̃ ≡ 𝑅̃ − 𝑅̅ , the PT expected 

value is given by: 

 𝐸𝑉(𝑤) = 𝑊0
𝛼𝑤𝛼 [−𝜆∫ 𝑓(𝑧)(−𝑧)𝛼𝑑𝑧

0

−∞
  +   ∫ 𝑓(𝑧)𝑧𝛼𝑑𝑧

∞

0
],   (25) 

where 𝑓(𝑧) is the probability density function of 𝑧.  Similar to Case 1, again, this implies a corner 

solution for the optimal asset allocation, depending on the sign of the square brackets in eq.(25): if 

the sign is positive the optimal investment weight in the risky asset is 1*=w , and if the sign is 

negative we have 0* =w . Specifically, the optimal asset allocation is given by: 

 

𝑤∗  =       

{
 
 

 
   0          𝑖𝑓   𝜆 >

∫ 𝑓(𝑧)𝑧𝛼𝑑𝑧
∞
0

∫ 𝑓(𝑧)(−𝑧)𝛼𝑑𝑧
0
−∞

 ≡ 𝐵  

 

1           𝑖𝑓   𝜆 <
∫ 𝑓(𝑧)𝑧𝛼𝑑𝑧
∞
0

∫ 𝑓(𝑧)(−𝑧)𝛼𝑑𝑧
0
−∞

 ≡ 𝐵

     .   (26) 

Exactly as in Case 1, where the reference point is fRW0 , here too we find a discontinuous jump 

in the optimal asset allocation from 0 to 1 as the return distribution changes. Notice that if the return 



 

 

 

distribution 𝑅̃ is symmetric, then the distribution of 𝑧̃, the distance of the return from the mean 

return, is symmetric around 0.  In this case, the term B in eq.(26) is equal to 1, and thus the optimal 

allocation to the stock is 0 for any PT investor with 𝜆 ≥ 1. Thus, in Task 1, which has a symmetric 

return distribution, the optimal allocation to the stock is 0. In Tasks 2 and 3 we also have B<1, and 

thus, again, the optimal allocation to the stock is 0 for any loss-averse PT investor.20 Thus, the 

prediction of PT with a reference point at the expected value of wealth is an allocation of 0 to the 

stock in all three tasks of our experiment.21  

Case 4: Stochastic Reference point at the Future Value of Wealth Invested in the Stock  

Many funds managers are evaluated relative to a benchmark or index (Sharpe 1992). Some 

individual investors may also consider their reference point as the alternative of investing in the 

risky stock. This has led De Giorgi and Post (2011) to suggest a state-dependent stochastic reference 

point, which is the wealth if invested in the stock. This stochastic reference point also implies a 

corner solution for the optimal asset allocation, and a discontinuous jump for 0 to 1 in the optimal 

allocation to the stock, as shown below. 

The investor’s reference point is his terminal wealth if invested in the stock, i.e. 𝑊0𝑅̃. If 

the investor invests a proportion w in the stock, then his terminal wealth is: 

𝑊̃𝑇 = 𝑊0[𝑤𝑅̃ + (1 − 𝑤)𝑅𝑓], and the change of wealth relative to the stochastic reference point is: 

                                                           
20 For example, in Task 2 we have 𝑅̅ = 1.21 ,  

and 𝑧̃ = (−0.4  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 0.25; −0.04  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 0.5;   0.48  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 0.25; ). This implies 

 𝐵 =
0.25∙0.48𝛼

0.5∙0.04𝛼+ 0.25∙0.4𝛼
, or =

0.48𝛼

2∙0.04𝛼+ 0.4𝛼
 , which is smaller than 1 for any 𝛼 < 1. Similarly, in Task 3 we 

have 𝑅̅ = 1.331 and =
3

8
0.190𝛼+

1

8
0.866𝛼

3

8
0.278𝛼+

1

8
0.602𝛼

 , which is, again, smaller than 1 for any 𝛼 < 1. 

21 The setup with reference point at the expected value of wealth typically implies an optimal allocation of 1 

to the stock when the return distribution is negatively skewed. For example, if the rate of return on the stock 

is -50% with probability 0.1, and 20% with probability 0.9,  we have 𝑅̅ = 1.13 and     𝐵 =
0.9∙0.07𝛼

0.1∙0.63𝛼
.   For 

𝛼 = 0.8 , for example, we have 𝐵 = 1.55, and thus for any PT investor with 𝜆 < 1.55 the optimal investment 

proportion in the stock is 1. 



 

 

 

 𝑥̃ ≡ 𝑊̃𝑇 −𝑊0𝑅̃ = 𝑊0(1 − 𝑤)[−(𝑅̃ − 𝑅𝑓)].     (27) 

Denoting the stock return in excess of the risk-free rate by fRRr −
~~

,  we  have: 𝑥̃ =

𝑊0(1 − 𝑤)(−𝑟̃) , and the PT  expected value is given by: 

 𝐸𝑉(𝑤) = 𝑊0
𝛼(1 − 𝑤)𝛼 [−𝜆 ∫ 𝑓(𝑟)𝑟𝛼𝑑𝑟

∞

0
  + ∫ 𝑓(𝑟)(−𝑟)𝛼𝑑𝑟

0

−∞
  ].  (28) 

(Notice that when 𝑟 is positive 𝑥 is negative, i.e. this is a loss. This is the reason that the integral 

over the positive values of 𝑟  are multiplied by the loss aversion coefficient 𝜆). Similar to the cases 

analyzed in the text, this again implies a corner solution for the optimal asset allocation, depending 

on the sign of the square brackets in eq.(28): if the sign is positive the optimal investment weight 

in the risky asset is 0* =w , and if the sign is negative we have 1*=w . Specifically, the optimal 

asset allocation is given by: 

 

𝑤∗  =       

{
 
 

 
   0          𝑖𝑓   𝜆 <

∫ 𝑓(𝑟)(−𝑟)𝛼𝑑𝑟
0
−∞

∫ 𝑓(𝑟)𝑟𝛼𝑑𝑟
∞
0

=
1

𝐴
  

 

1           𝑖𝑓   𝜆 >
∫ 𝑓(𝑟)(−𝑟)𝛼𝑑𝑟
0
−∞

∫ 𝑓(𝑟)𝑟𝛼𝑑𝑟
∞
0

=
1

𝐴
  

     .             (29) 

Eq.(29) implies a discontinuous jump in the optimal asset allocation from 0 to 1 as the return 

distribution changes, just like in Case 1. The intuition for eq.(29) is the following: the investor 

dislikes deviations from the stock, which is his reference point, so a large 𝜆 induces allocation of 1 

to the stock. The investor is willing to deviate from holding the stock only if i) his 𝜆 is not very 

large, and ii) the performance of the stock relative to the risk-free asset is not so good, i.e. the 

fraction is eq.(29) is large. Notice that the fraction in eq.(29) is exactly the inverse of the fraction 

in eq.(5) given in the text, which we denoted by A. The conditions (5) and (29) are not identical: 



 

 

 

while eq.(5) implies that the optimal allocation to the stock is 100% if 𝜆 < 𝐴 , eq.(29) implies this 

result for 𝜆 > 1/𝐴 . While these are different conditions, they do imply the same qualitative 

behavior: as the horizon increases, and the probability that the stock yields a higher return than the 

risk-free asset approaches 1, A increases indefinitely, and we have both 𝜆 < 𝐴  and 𝜆 > 1/𝐴, i.e. 

both cases imply an allocation of 100% to the stock. However, the jump to the stock may occur at 

different horizons under the two setups with alternative reference points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix B: 

Optimal Investment Proportion in the Stock for PT Preferences with Reference Point 

at the Future Value of Current Wealth invested at the risk-free asset ( fRW0 ) and CPT 

decision weights, 69.0,61.0 ==  .  

A: Task 1 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

1.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

B: Task 2 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

C: Task 3 

Lambda\alpha 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.50 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

2.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 



 

 

 

Appendix C 

 

 

The optimal asset allocation between the S&P500 index and 3-month T-bills for 

CRRA investors with a 10-year investment horizon. The optimal allocation is 

calculated when the portfolio can be revised annually (bold line), and when no 

revisions are possible (thin line). We employ the empirical returns during 1997-2016. 

For the 10-year horizon, the 10-year return distributions are estimated by randomly 

drawing 50,000 sets of 10 returns (with replacement) from the annual returns on the 

S&P500 index during 1997-2016. The T-bill rate is taken as the average annual rate 

over this period (2.14%). The figure shows that the optimal asset allocation is almost 

the same whether revisions are allowed or not. Thus, a CRRA investor should 

optimally allocate approximately the same proportion to stocks whether he invests for 

one year or for ten years, even if portfolio revisions are not possible. 

 

 

 

 

 



 

 

 

 

Appendix D: The Control Task 

The following task was used as a control, to filter out subjects who did not take the questionnaire 

seriously, or failed to comprehend the experimental setup: 

 

Suppose that you can invest the $100,000 either in investment  F or in investment G (but 

you cannot diversify between the two investments) with the following end of period 

values: 

 

       Investment    F                                        Investment   G               

   Outcome        Probability                        Outcome      Probability 

    $110,000            .50                                 $110,000          .25 

    $120,000            .50                                  $120,000          .50 

                                                                      $130,000          .25 

 

Which investment will you choose?    _________   (Please write F or G) 

 

Investment G dominates investment F by First-degree Stochastic Dominance (FSD). Thus, we 

expect all rational subjects to choose G. Indeed, 90% of the subjects chose G. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix E: The Average Allocation to the Stock, by Group and by Task 

The average asset allocations in a given task are similar across the four subject groups. 

The differences between groups are not statistically significant. Specifically, the null 

hypothesis of homogenous investment choices of the four groups in Task I, Task II and 

Task III  cannot be rejected (p= 51.9%, 45.2% and 7.7% , respectively). When we 

regress the individual investment proportions in a given task on group dummy variables 

none of the dummy coefficients are significant.  

 

Group 

Tasks 
Average 

across 

tasks 
Task I Task II Task III 

1 

China 

(undergraduate 

students) 

52.4% 55.2% 54.8% 54.1% 

2 
Hong Kong –  

(Master students) 
46.7% 55.4% 63.4% 55.2% 

3 
Israel –  

(Master students) 
58.8% 63.8% 66.0% 62.9% 

4 
Israel – (Professional 

investors) 
52.2% 56.9% 52.8% 54.0% 

 Average across 

groups 
53.7% 59.0% 58.1% 56.7% 

 

 

 

 

 

 

 

 

 

 

 


